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This paper is concerned with the dispersion of a dynamically neutral material 
quantity in a fluid flowing through a porous medium. The medium is regarded as 
an assemblage of randomly orientated straight pores, and it is assumed that the 
path of a marked element of the material quantity consists of a sequence of 
statistically independent steps whose direction and duration vary in some 
random manner. The probability density function for the displacement of a single 
marked element is calculated and values for the dispersion of a cloud of marked 
elements then follow. 

The case is examined in which the flow satisfies Darcy’s law (i.e. the mean 
velocity is linearly proportional to the mean pressure gradient), and the mole- 
cular diffusivity is sufficiently small for the dispersion to be primarily due to the 
randomness of the streamlines, but it is not assumed that effects of molecular 
diffusion can be altogether neglected. It is shown that the longitudinal dispersion 
in the direction of the mean flow may be described asymptotically by an effective 
diffusivity which is a function of U ,  1, a, K and T.  (U denotes the average velocity, 
E the pore length, a the pore radius which is shown to be related to the per- 
meability, K the molecular diffusivity, and T the time from the initial instant.) 
Expressions for the longitudinal diffusivity K~ are obtained according to the 
relative values of l /U ,  T ,  to = 1 2 / 2 ~  and t ,  = a 2 / 8 ~ .  These are given in $4, equa- 
tions (4.3), (4.4) and (4.5). Speaking roughly, when to 9 T 9 Z/U,K,/UZ is a 
logarithmic function of U T / l  and increases with T; when T 9 to 9 l /U ,  which 
must eventually be the case however small K ,  K ~ / U ~  is a, logarithmic function of U ~ / K  
and independent of T .  The theoretical results are compared with experimental 
data reported in the literature and approximate agreement is obtained when E is 
put equal to the average diameter of the particles composing the porous medium. 

The lateral dispersion in the direction perpendicular to that of the mean 
velocity is found to be governed asymptotically by an effective diffusivity 
ct = &Ul. However, it is pointed out that some of the assumptions, namely that 
successive steps are statistically independent and that the dispersion of a cloud 
follows immediately from the statistical properties of the displacement of a single 
marked element, may not be valid for the lateral dispersion and this result is 
therefore suspect. 

Remarks are made in $ 5  on the dispersion for high values of the Reynolds 
number Ul/v  (v = kinematic viscosity) when Darcy’s law is not obeyed, and it is 
argued that q / U l  should decrease as Ullv increases. 
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1. Introduction 
When a viscous fluid flows through the pores and voids of a porous medium, 

such as a bed of sand, a tower of small glass beads, a porous rock like limestone, 
etc., a material quantity carried by the fluid (e.g. a substance in solution or heat) 
is dispersed by molecular diffusion and by what may be called ‘convective’ or 
‘mechanical diffusion’. The latter effect arises from the irregular pattern of the 
streamlines through the pores and voids, and the consequent tendency for fluid 
elements which are originally close together to become separated. The situation 
is in fact somewhat analogous to that of turbulent diffusion, the difference being 
that in a porous medium the irregularity of the streamlines arises from the com- 
plicated geometrical structure of the medium instead of from random solutions 
of the Navier-Stokes equations. 

The purpose of this paper is to examine the ‘convective diffusion ’ of a dynami- 
cally neutral material quantity or, as is equivalent, the phenomenon of ‘miscible 
displacement’ when a viscous fluid is expelled from a porous medium by another 
fluid of identical viscosity and density with which it is completely miscible, since 
in this case the relative concentrations of the fluids may be regarded as a dynami- 
cally neutral material quantity. In  an actual flow further complications are often 
present; for example, adsorption of the material quantity on the solid material 
of the medium may occur, the physical properties of the fluid may vary signi- 
ficantly with the concentration of the material quantity, etc. Such effects are 
often of great practical importance, but we shall not consider them here at all. 

The detailed structure of the medium is usually highly irregular and only a few 
statistical properties are in practice available. A detailed solution for the flow 
pattern is therefore not a practical possibility, and even if it were it is doubtful 
whether it would be useful because of its complexity. However, the quantities of 
interest are often spatial averages; for instance, the filter velocity which is the 
flux of fluid per unit area of the medium, the ‘average’ or interstitial velocity 
which is the spatial average of the velocity over the region occupied by fluid,” and 
the mean pressure gradient and mean concentration of a material quantity which 
may be likewise defined. (It need hardly be pointed out that the spatial average is 
a useful concept only if the medium and the flow are effectively statistically 
homogeneous over a region large compared with the dimensions of the grains or 

* The average velocity is in fact the flter velocity divided by the porosity (the fraction 
of porous media actually occupied by fluid), since the filter velocity is 

j u d S ‘ / P  = j u d V / P V  

where d S  and d V denote elements of area and volume of the porous media and u is the 
velocity of the fluid. The average velocity is 

where d V‘ is an element of volume entirely occupied by fluid, since u = 0 if d V + d V‘ 
and by definition 

where u denotes the porosity. 
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pores.) It seems reasonable to suppose that the various ways in which such 
averages may depend upon one another will not be greatly affected by changes in 
the detailed structure of the medium which leave its statistical properties un- 
altered, and that i t  will be profitable to consider not the flow through an actual 
porous medium but a simple model of such a flow, the model being constructed so 
that i t  appears to correspond in essentials with the actual flow, and is capable of 
mathematical analysis. Scheidegger (1957) gives an account of various models 
which have been put forward to calculate the permeability (i.e. resistance to flow) 
of porous media. 

A ' random-residence-time ' model for longitudinal dispersion has been put 
forward and developed by several writers (see, for example, McHenry & Wilhelm 
1957, where other references are given). (When the average velocity is uni- 
directional, the dispersion in the same direction is termed longitudinal or axial 
dispersion, and that in the perpendicular directions lateral or transverse dis- 
persion; there is no reason why these should be equal even though the medium is 
statistically isotropic.) Briefly, this theory considers the flow through a sequence 
of cells in each of which there is complete mixing, i.e. in which the probability of 
a fluid element leaving a cell in any interval of time is independent of the length of 
time it has been in the cell. The time of passage of a fluid element through a length 
of the porous medium is then the sum of the times spent in each cell, and is a 
random function which tends to a Gaussian form with a variance proportional to 
the number of cells as this number becomes large. It can then be shown that the 
longitudinal dispersion is described by the diffusion equation with an effective 
diffusivity proportional to the product of the average velocity and the length of 
each cell. Identifying this length with the diameter of the solid particles of which 
the medium is composed, one obtains values in reasonable agreement with 
experimental observations at values of the Reynolds number, based on the 
average velocity and average particle size, in the range 50-200. For these Reynolds 
numbers, the flow in the voids may be turbulent, producing fairly intensive 
mixing, so that the model appears to be a not unreasonable simplification of the 
actual flow. However, it does not lend itself to a study of lateral dispersion, and 
also the validity of the model to describe what happens at low Reynolds numbers 
is open to question. 

An alternative approach to the problem of dispersion is to follow the motion of 
a marked fluid particle, supposing that its path varies in some postulated random 
manner. The probability distribution of the displacement of a single fluid particle 
after a given time may then be calculated. If the distance traversed or the time 
taken is sufficiently large for the assumption to be valid that the paths of initially 
neighbouring particles become statistically independent, the dispersion of a 
marked volume of fluid can be obtained. 

Several writers (e.g. Baron 1952; Scheidegger 1954) have investigated dis- 
persion on the assumption that a fluid particle carries out a random walk con- 
sisting of a succession of statistically independent straight steps in equal small 
intervals of time. It follows from the Central Limit Theorem of statistics that the 
probability distribution function of the displacement is Gaussian with a variance 
proportional to the time, and hence that the dispersion is described by the 

21-2 
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diffusion equation with the effective diffusivity related to the parameters of the 
random walk. 

This treatment is physically not entirely satisfactory, partly because the time 
is broken up into equal small intervals and i t  would be expected intuitively that 
a particle stays longer in a region where the velocity is small than where it is large, 
and also because it seems to predict that the dispersion is isotropic since there is 
no obvious mechanism whereby the velocity fluctuations about the mean, and 
thence the displacement about the mean position, are correlated with the direction 
of the average velocity. 

The present work originated in a suggestion by Sir Geoffrey Taylor that the 
dispersion might be investigated by taking as a model of the flow through a porous 
medium that through an assembly of randomly orientated and distributed 
straight pores, in each of which the flow is uniform. The pores are supposed to be 
connected with one another at the ends and several pores may start or finish at 
these end-points. The dimensions of the pores are to be taken as comparable with 
the size of the particles composing the bed. In  other words, the medium is 
visualized as a lattice in which a randomly distributed set of points are connected 
to  their neighbours by straight uniform pores. The path of a fluid particle may 
then be regarded as a random walk in which the length, direction, and duration 
of each step are random variables. The probability distribution function of the 
displacement of a fluid particle after a given time may then be calculated and a 
value for the dispersion obtained. 

One condition which must be satisfied in order that this model should apply to 
the actual dispersion of a material quantity is that the amount of dispersion that 
takes place is large compared with the dispersion there would be due to molecular 
diffusion acting alone as under static conditions, i.e. the effective diffusivity must 
be large compared with the molecular diffusivity. It will be assumed throughout 
this paper that this is the case. This is not to say, however, that molecular diffusion 
is entirely negligible; on the contrary, it will be found that the theory to be 
developed below predicts that in some cases the effective diffusivity is a loga- 
rithmic function of the molecular diffusivity (cf. Taylor (1953, 1954) where it is 
shown that the effective diffusivity describing the dispersion of a material 
quantity in a fluid flowing through a long capillary tube is inversely proportional 
to the molecular diffusivity). But it is expected that this theory is valid only if 
the molecular diffusivity is sufficiently small compared with the product of the 
average pore length and average velocity which, as will be seen, determines the 
order of magnitude of the effective diffusivity. It is worth mentioning in passing 
that there are physical circumstances of great interest (e.g. geothermal flows) in 
which ‘convective diffusion’ is small compared with molecular diffusion and may 
be entirely neglected. 

After this paper had been completed, it was discovered that Josselin de Jong 
(1958) had considered a similar model and obtained one of the results of this paper, 
namely that of equation (4.4b) below. However, the model discussed in this 
paper is rather more general, and various results are obtained, that given by 
Josselin de Jong being a particular case apparently valid only for a certain limited 
range of the physical parameters. 
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2. Description of the model and formulation of the random walk 
In  this section we describe the model for calculating dispersion in a porous 

medium which supposes that the medium is an assembly of randomly orientated 
straight uniform pores and that a marked particle moves along a random suc- 
cession of straight steps, each step corresponding to passage through one pore, of 
variable direction and duration. It is supposed that the medium is statistically 
homogeneous and isotropic, and that the average velocity or mean pressure 
gradient is constant and unidirectional. We take a co-ordinate system with the 
x-axis in the direction of the average velocity, and denote by I the length of a step, 
by0 the angle between the direction of motion along the step and that oftheaverage 
velocity, by # the azimuthal angle between the y-axis and the projection of the 
step on the yz-plane (0 < q5 < 2n), by t the duration of the step, and by q = lit the 
velocity of the marked particle along the step. Then the displacement of a marked 
particle after n steps is a random variable with components parallel to the axes 

X ,  = Cl,cos8,, Yn = ~l,sin19~cos#,, 2, = Cl,sinB,sin#,, (2.1) 
n 12 n 

1 1 1 

and the time for n steps is the random variable 

(2.2) 

where the suffix r refers to the rth step. In  order to obtain the probability distribu- 
tions of the various random variables, we must now examine the flow through the 
model. 

The velocity of the Jluid through the pores 

Let us consider the average speed, Q say, of the fluid flowing through a particular 
pore, i.e. @ is the flux of fluid through the pore divided by its cross-section area; it 
is in general a random quantity which varies from pore to pore. (It is called here 
the 'average speed' to distinguish it from the 'average velocity' which in this 
paper is a spatial mean over many pores.) 

We shall now suppose that the inertia of the fluid is negligible and that the 
motion through the pores is dominated by viscosity. In  this case the Navier- 
Stokes equations which describe the motion of the fluid through the pores become 
linear and the average velocity will be linearly proportional to the mean pressure 
gradient and inversely proportional to the viscosity of the fluid. That is, Darey's 
law is satisfied according to which 

Q = kp'lp, (2.3) 

where Q is the filter velocity, P' is the mean pressure gradient, ,u is the viscosity, 
and k is a constant with dimensions (length)2 which is a property of the porous 
medium and is called the permeability. The range of validity of Darcy's law 
depends upon the Reynolds number of the motion through the voids and the 
structure of the medium (see Scheidegger 1957). 

Further, the average speed $ is proportional to the pressure drop between the 
ends of the pore divided by the length of the pore, i.e. to the pressure gradient 
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along the pore. Now the pressure in the fluid is P'x+p,  where p is a random 
quantity whose spatial average over many pores is zero, and if the fluid inertia is 
negligible it is not unreasonable to suppose that p does not vary too rapidly with 
position and that the pressure gradient in a pore making an angle 0 with the x-axis 
and with azimuthal angle # is 

(.'+:) cos 8 + ay aP sin e cos 4 +-sin aP 8sin 4 
a2 

= PI{( 1 + p l )  cos 8 + p ,  sin 8 cos # +p3  sin 8sin $}, (3.4) 

where (p l , p , , p3 )  = ( l / P ' )  gradp are dimensionless random quantities with zero 
mean whose statistical properties depend entirely upon the medium and are 
independent of the magnitude of P (since the equations of motion are linear) and 
also of 8 and #. Then, 

AP' 
P 

g = - ( ( 1  + p l )  cos 8 + p ,  sin 8 cos # +p3  sin @ sin #), 

where A is the cross-section area of the pore multiplied by some function of its 
shape. By definition, @ is a positive quantity and the values of 8 and # for a pore 
(or step) are defined as those (0 < 8 < n; 0 < # < 2n) for which (2.5) is positive. 

In  general, A will be a random quantity varying from pore to pore. However, 
we shall assume, primarily for the sake of simplicity, that all the pores are of 
circular cross-section and of equal radius a, say, so that A = +a2. This assumption 
is physically not very good, but it actually involves no real loss of generality and 
does not affect the results significantly. It is perfectly possible to go through the 
analysis with A as a random variable (and even with the cross-section of a pore 
varying), but since we do not know the statistical properties of A and in any case 
the model is only an approximation to an actual porous medium, it seems hardly 
worth while introducing extra complications of this kind. For similar reasons, all 
the pores will be supposed to be of the same length I, say, where a should be small 
compared with 1 for the model to be strictly meaningful. 

The average velocity and permeability of the model 

The probability density function (p.d.f.) of (pl ,p2,  p3,)  will be supposed Gaussian 
and isotropic* so that the probability that it lies in the range (p1 )p2)p3)  to 
(131 + dPl, Pz + dPZ) P3 + dP3) is 

where h is some dimensionless constant parameter which will depend only on the 
structure of the porous medium. The value of h is a measure of the relative 
magnitude of the mean pressure gradient and the fluctuations; (p1,p, ,p3)  = 0 
corresponds with h = ax 

* The assumption that this p.d.f. is isotropic is unlikely to be strictly correct since there 
is in fact a preferred direction, namely that of the average velocity, but it considerably 
simplifies the analysis and is unlikely to lead to a significant error. 
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The proportion of pores such that the values of 8, 9, p,, p2  and p3 lie in the 
element of generalized volume d8dq5dp,dp2dp3 = d X ,  say, is therefore propor- 
tional to the product of sin 8d8d# and (2.6), and is 

exp [ - h(p; +pE +pi)] d8 d$ dp, dp, dp,, 
27r 

(2.7) 

where the domain of X is 0 < 8 < rr, 0 < 4 < 27r, @> 0, and the constant of 
proportionality was chosen to make the integral of (2.7) over the domain E equal 
to one, so that (2.7) is a true proportion. 

The components parallel to the x-, y- and z-axes of the average speed through 
a pore are 

and, by definition, the components of the average velocity are the values of (2.8) 
averaged over many pores. The components of average speed in the y- and 
z-directions clearly average to zero. The average velocity in the x-direction is 
denoted by U ,  where 

4 cos 8, @ sin 8 cos 4, @ sin 8 sin 4, (2 .8)  

exp [ - h(p; +p;  +pg)] dZ 

a2P‘ -- - 
24p ’ 

on substituting from (2.5) for ij and integrating (see the Appendix). 
The filter velocity Q is crU, where cr is the porosity and thus Q = (aa2P’)/24p, 

whence the permeability k = (aa2)/24. Note that k is independent of A. This 
expression may be used to obtain an estimate of a which is otherwise very much 
an unknown quantity. For instance, Mr R. Wooding in the Cavendish Laboratory 
has measured the permeability of a bed of glass spheres of average diameter 
2 x cm and obtained the value k = 3 x lo-’ cm2, the value of the porosity 
being 0-37. Substituting into the formula for the permeability, we obtain 
a + 4 x 1O-3cm. Taking as a value for I the average diameter of the spheres, we 
have all = 5, which seems reasonable. The question of what value to give h will 
be deferred for a little while. 

The duration of the steps in the random walk 

We can now return to discuss the properties of the random walk. The velocity of 
an idealized fluid particle in a pore is 

q = 2@(1-$), (2.10) 

where r is the distance of the fluid particle from the axis of the pore and the 
velocity profile has been assumed parabolic. The duration t of a step by an idealized 
fluid warticle would then be 

(2.11) 

At first sight it might be thought that infinitesimal elements of the material 
quantity may be assumed to move through the pores like idealized fluid particles 
so that the duration of a step is given by (2.11). Speaking roughly, this is per- 
missible if the duration of a step is small compared with the time required for 
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effects of molecular diffusion to be appreciable. However, t is large without bound 
for steps in which r is nearly equal to a or @ is very small; so that even though the 
molecular diffusivity is as small as we please, there will be some elements of 
material quantity which are so long in a pore that molecular diffusion may be 
appreciable and it is not obvious that it is meaningful to regard them as moving 
like idealized fluid particles. We may intuitively expect this effect to be negligible 
if the proportion of idealized fluid particles undergoing steps of very long duration 
is sufficiently small, but exactly how small remains to be determined. To antici- 
pate, it  may be shown (see 4 3) that the condition of being sufficiently small is that 

lom tf ( t )  dt is finite, wheref ( t )  dt is the proportion of idealized fluid particles which 

at any instant are undergoing steps of duration in the range t to t+dt. The 
proportion of pores in which the average speed is is given by (2.7), the duration 
is given by (2.1 l), the proportion of fluid particles in a pore whose distance from 
the axis is between r and r + dr is 2r &/a2; hence for fluid particles 

on substituting for $from (2.5) and (2.9), writingp = r2/a2, and using the method 
of integration described in the Appendix. Each of the integrals in (2.12) is 
divergent, and this as it turns out is the mathematical reason why it is necessary 
to make some attempt at  estimating the effect of molecular diffusion on the 
motion through a pore. 

Molecular diffusion affects the material quantity moving through a pore in two 
ways. First, the material quantity diffuses sideways across the pore so that an 
element of material quantity does not stay on a streamline r = constant but 
spreads out over neighbouring streamlines. It may be expected that this effect is 
negligible if t < t,, where t is the time spent by the material element in the pore 
and t ,  is the time for appreciable molecular diffusion over a distance comparable 
with that in which the velocity differs by a factor of order unity. An estimate of 
the value o f t ,  is t, = a2 /8K ,  where K is the molecular diffusivity (this expression is 
obtained by analogy from the formula for diffusion x2 = 2 ~ t  with x = *a). 

If the average speed through the pore is so small that l / $ B  t,, then any material 
quantity has ample time to diffuse across the pore. This is the case discussed by 
Taylor (1953,1954) and Aris (1956) who have shown that if a material quantity is 
introduced into a fluid flowing through a long thin straight tube, then after a time 
large compared with t, the concentration of the material quantity is approxi- 
mately uniform over the pore cross-section and the material quantity is con- 
vected with the average speed in the tube, at the same time diffusing along the 
tube, relative to axes moving with the mean speed, with an effective diffusivity 

(3.13) 
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If we neglect for the moment the diffusion along the pore, it  does not therefore 
seem unreasonable to suppose that the transport of material quantity along a pore 
for which 113 9 t ,  is approximately the same as the transport calculated on the 
assumption that elements of the material quantity remain elements and all move 
with the average speed. In  other words, it  is assumed that the duration of all steps 
through such a pore is t = I / @ .  

If an element of material quantity enters a pore with I/@ < t, on a streamline 
close to the wall for which the duration of passage of an idealized fluid particle is 
large compared with t,, then this element will have ample time to diffuse sideways 
on to streamlines where the velocity is not small and be convected along to the 
end of the pore. It again does not seem unreasonable to suppose that the transport 
of this material element is taken account of approximately by supposing that it 
remains an element and reaches the end of the pore in a time t = t ,  + Z/@. 

Let us now consider the second effect of molecular diffusion which is transport 
of material quantity by diffusion along the pore. This effect will be negligible if 
t < to, where to = Z 2 / 2 ~  is an estimate of the time for appreciable diffusion along the 
pore. If, on the other hand, I/@ $ to, then the transport of a material element 
along the pore by convection will be negligible compared with the transport by 
diffusion, and it does not seem an unreasonable approximation to suppose that the 
transport along these pores is adequately represented by the passage of material 
elements in a time t = to. Note that the assumption a < I implies t ,  < to. 

The preceding remarks may becombined in an approximate manner to give the 
following rule for specifying the duration of a step made by a material element: 

if t < t ,  ( t ,  = a 2 / 8 ~ ) ,  
1 

2@( 1 - rz/a2) 
t =  (2.14 a )  

t = tl+l/@ if t ,  < t < to (to = P / ~ K ) ,  (2.14b) 

t = to otherwise. ( 2 . 1 4 ~ )  

Now the above discussion of the effects of molecular diffusion is somewhat crude 
and limited, but it is not easy to see how it can be improved. The essential 
difficulty, which also occurs in the theory of turbulent diffusion, lies in the 
problem of combining the Lagrangian and Eulerian descriptions of a fluid 
motion, the former being the natural way of calculating how a marked particle 
moves and the latter of treating molecular diffusion. The rules (2.14) are probably 
alright if the molecular diffusivity is small enough for to and t, to be large com- 
pared with the average duration f, say, of a step (a precise value for f is obtained 
later but it is clearly O(Z/U)), so that relatively few material elements are affected 
by molecular diffusion. Further, the values that will be obtained for the dispersion 
are logarithmic functions of to/i and t J f ,  and are thus fairly insensitive to the 
numerical values in the definitions of to and t,. This reinforces belief in the 
adequacy of (2.14) to represent the effects of molecular diffusion. A smooth 
function of 4, to, t ,  and r with essentially the same behaviour as (2.14), apart from 
the discontinuities a t  t = t, and t = to, may easily be constructed ; but there is no 
real gain and the analysis becomes much more complicated. 

It is possible that the structure of the medium is such that the pores should be 
regarded as exceptionally thin compared with their length and the average 
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velocity is such that t ,  < f < to. In  this case we shall suppose that the concentra- 
tion of the material quantity is uniform over the pore cross-section and that the 
material quantity is convected with the average speed. The rule analogous to 

(3.14) for this case is t = I/@ if t < to (to = /2/2K), (2.15 a)  
(2.15 b )  

The objection may be raised that the effective diffusivity K' as given by (2.13) 
should be used in the definition of to rather than K .  However, when t as given by 
(2.14 b )  or (2.15~) is close to to, ( a 2 g 2 / 4 8 ~ ) / ~  = &a2/Z2, so that K' may be replaced by 
K to a good approximation in the definition of to. 

t = to otherwise. 

The probubility that a given step occurs in the random walk: 

To complete the formulation of the random walk, it remains to evaluate the 
probability that a marked material element chooses a step with angles in the 
range 8 to 8 +do and q5 to q5 + dq5, and of duration in the range t to t + dt, where t is 
defined as a function of 4 and r by either (2.14) or (2.15), and 4 is a function of 
8, q5,p,,pz and p,. The values of @ and r for a step by an infinitesimal material 
element are assumed to be the values of these quantities for the fluid particle with 
which it coincides a t  the beginning of the step (and remains coincident if 
t ,  1/{2q^( 1 - r2/u2)}, otherwise they separate and the element completes the step 
in the time given by (2.14) or (2.15)). The required probability is hence the 
probability that an idealized fluid particle chooses a streamline with values of 
8, q5, p,, p z ,  p ,  and r in the element of generalized volume d8d$ dp, dpz dp, dr. The 
proportion of pores with appropriate values of the variables is given by (2.7), and 
the proportion of a pore with r in the range r to r + dr is 2rdr/a2, and thus the 
proportion of such streamlines existing in the model is (3.7) multiplied by 2r dr/aZ, 

2r 
a2 

exp [ - A(p3 +pz +pi)]  -d8dq5 dpl dp2 dp,  dr. (2.16) 
namely 1 

Now this is not the probability that a fluid particle will choose such a streamline 
because the rate at which fluid particles go along a streamline is proportional to 
the velocity on the streamline. Suppose, for the sake of example, that a large 
number of particles arrive at a junction from which start two streamlines, then 
the relative number of fluid particles which go along the streamlines is propor- 
tional to the ratio of the velocities of the streamlines. Thus, the required 
probability is, apart from a normalizing factor, (2.16) multiplied by the velocity 
of the streamline, 24( 1 - r2/a2), and is 

2 @( 1 - z) &sin O(;)'exp [ - A(p: +pi +pi)] 2 2r dOd$ dp,  dp2 dp, dr, 
N 

(2.17) 

where @ is given by (2.5), the range of the variables is the domain 0 < 8 < 7 ~ ,  

0 < $ < 27~,  0 < r < a, @ 2 0, denoted here by P, and N is a normalizing factor so 
that the integral of (2.17) over P is equal to unity. In  fact, see the Appendix, 

(2.18) 

For brevity of writing, we shall denote (2.17) symbolically by dP. 
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Xtatistical independence of successive steps 
The remaining assumption to be made is that successive steps in the random 
walk are statistically independent. This is necessary in order to keep the analysis 
of the random walk tractable and seems alright as a beginning, but it is in fact not 
as good as might be thought. It appears reasonable as far as the values of 8 and r 
for successive steps are concerned since there is no apparent mechanism for 
correlating successive values, but this is not the case for @and q5. Since fluid cannot 
accumulate, it follows that pores with large (or small) values of 9 are more likely 
to be followed by pores with large (or small) values of @ than with small (or large) 
values. If many pores start and finish together, this effect is likely to be small; 
if only a few, then this effect will not be entirely negligible, but the indications 
are that the error due to this cause in the results to be obtained consists in the 
numerical coefficients being inaccurate by a factor not too different from unity. 

The statistical independence of successive values of q5 is rather more of a 
problem. However, it does not affect the longitudinal dispersion, owing to the 
statistical isotropy of the model, so we shall defer consideration until we examine 
the results for the lateral dispersion, which, of course, will depend upon whether 
there is correlation between successive values of q5. 

Ensemble averages 
We can now evaluate the random variables X, ,  Y,, 2, and T,, defined in (2.1) 

and (2 .2 ) ,  which give the displacement and time after n steps of the random walk, 
and evaluate the probability that the displacement of an element of material 
quantity has a given value after a given time. This probability distribution is 
strictly speaking an ensemble average over many realizations of the model. That 
is, if we take a large number of samples of the medium, each with a different 
arrangement of pores but with the same statistical properties, and observe the 
displacement of a single material element through each of them, the calculated 
probability is equal to the proportion of samples in which the displacement has 
a given value after a given time as the number of samples tends to infinity. 
However, by the properties of ergodic theory, and assuming statistical homo- 
geneity of the medium, the probability distribution gives the proportion of 
elements which have a given displacement after a given time if a large number of 
elements are started from different points scattered randomly through the same 
sample. All average properties of the random walk and of individual steps of the 
random walk are likewise ensemble averages, as distinct from spatial averages as 
in the definition of average velocity. 

It is perhaps worth while demonstrating, for the sake of example, the equality of 
the spatial average and ensemble average (after many steps) of the velocity of an 
idealized fluid particle, i.e. a particle whose velocity is always given by (2.10). The 
(ensemble) average of the displacement after one step has components parallel to 
the axes: 

x = $, I cos 8 dP = IUjiV on performing the integration, 

r P 

i~ = J lsinecos$dP = 0, x = J IsinBsinOdP = 0, 
P P 
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where dP is given by (2.17) and the bar denotes an ensemble average. The average 

d P = l I N .  
1 duration of a step is 

Then 
- - - n -  n 

1 1 

- 
X, = Xz, = nx, Y ,  = 2, = 0, T,  = Ct,  = nf. 

Hence, XnlCfn = U from which it follows that Xn/Tn -+ U in probability as 
n -+ 00, since (as follows rigorously from the results of the next section) X J X ,  
and Tn/Fn tend in probability to one as n + 00; and a fortiori (X,/T,) + U. Note 
that these results are independent of A. 

The dispersion of a cloud of marked particles can be calculated from the 
statistical properties of the displacement of a single marked particle if the time or 
displacement are large enough for the paths to become statistically indepen- 
dent.* Exactly how large the time or displacement should be for this condition 
to be approximately satisfied is far from clear, but it seems plausible that not too 
many, of the order of 100 say, will suffice for the longitudinal dispersion, although 
(for reasons which shall be given later) more may be required for the lateral 
dispersion. 

The assumption h = co 

In  the analysis of the random walk, we shall for the sake of mathematical 
simplicity put h = 00. This is equivalent to (p l ,  p 2 ,  p 3 )  = 0. The average speed in 

(2.19) 
a pore is then 

and the expression (2.17) for the probability of a step being such that 8, q5 and r lie 
in a range of extent d8 dq5 dr becomes 

Q = 3ucose (0 < B G in), 

(2.20) 

where the domain, P, of the variables is 0 < 8 < &r, 0 ,< q5 < 277, 0 < r ,< a. The 
rules (3.14) or (2.15) for the duration of a step by an element of material quantity 
remain unaltered. 

There is no loss of physical generality in this assumption. The analysis may be 
carried out for a general value of A, but it is found that the results for h finite differ 
from those for h = co only by a numerical factor of order erfJh (=  1 when 
h = 00). Now from (2.7), the proportion of steps, for a general value of A ,  whose 
direction lies in the element of solid angle sin 6 d8 dq5 is 

We may intuitively expect this number to be small when 8 = n, i.e. in the direction 
exactly opposite to that of the average velocity, so that there are reasonable 

* I am indebted to Dr G. K. Batchelor for pointing out the proper interpretation of the 
mean values of the random walk as ensemble averages and the necessity for the paths of 
different marked particles to become statistically independent before the results for the 
displacement of a single particle may be used to calculate the dispersion of a cloud. 
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grounds for believing that erf ,/A is close to one. In  view of the fact that the model 
is a considerable simplification of an actual porous medium, there is therefore no 
real loss in putting h = 00, especially as there is no point in making the analysis 
more complicated than is necessary and the analysis with h finite is lengthy and 
cumbersome. 

3. Analysis of the random walk 
This section is devoted to the calculation of the statistical properties of the 

displacement of a single marked element after many steps. It is mathematical in 
character and no further physical assumptions will be introduced. The results of 
the section will be summarized at the beginning of 9 4 for the benefit of the reader 
who does not wish to follow the mathematics in detail. 

3.1. Statistical properties of the displacement after many steps 

Consider the displacement of an element of the material quantity after n steps, 
where n is for the moment a fixed number. The components along the axes are 
given by (2.1). X ,  is the sum of n independent random variables, and therefore 

similarly, y, = nl sin 8 cos $ and 2, = nl sin 8 sin $, where the bar denotes an 
ensemble average and the probability distribution of 0 and $ is given by (2.20). 

cos OdP = % and sinBcos$ = sinBsin$ = 0, the integrations 
~~ 

being elementary. Hence, 
- - - 
X ,  = 3n1, Y ,  = 0,  2, = 0. 

The variance of X ,  is the sum of the variances of the longitudinal displacement 
of the individual steps. Hence, 

and similarly 

Define dimensionless random variables 

y: = z i  = $(nl2) = n12a2,, say. J 

(3.3) 

Then x,, y, and z, have zero mean and variances a&, a:, a:, respectively. Also, 
it is immediate that x, y, = x, z, = y, z, = 0. It follows from the Central Limit 
Theorem of statistics (see, for example, Cram& 1946) that the probability 
distributions of x,, y, and z, are asymptotically normal and statistically inde- 
pendent as n + 00, the departure from normality for a fixed value of n being 
O(n-4). 

3.2. Statistical properties of the time for n steps according to the rules (2.14) 

~ ~ _ _  

Consider now the time for n steps, supposing that the rules (2.14) for the dura- 
tion of a single step apply. (The rules (2.15) will be considered later.) These rules 
are an approximation and are expected to be valid only if t ,  and to are large 
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compared with the average duration of a step. We shall therefore neglect in the 
analysis all terms which vanish as to and t, tend to infinity. The case of an idealized 
fluid particle is obtained by putting to = t,  = 00. On substituting from (2.19) for 
$ and using (2.14), we have for the average duration of a single step 

where the domain P, is that part of P in which 1/(6U( 1 - r2/a2) cos 6) < t,; P2 is that 
partofP-P,inwhicht, < t1+Z/(3Ucos8) < to;andP, = P-P,-P2. Substituting 
for d P  from (2.20), integrating with respect to 4, and writing p = 1 -r2/a2, we 
obtain 

where the domain of integration I is 0 < 8 < +T, 0 < p < 1, pcos8 > 1/6Ut,; 
I1 is 0 < p < 1, pcos8 < 1/6Ut,, cose > 1/(3U(to-t,)} + 1/3Uto; and I11 is 
0 < p < 1, 0 < cose < 1/3Uto. The integration is straightforward and gives, 
neglecting terms which vanish as to and t, tend to infinity, 

f = 21/3u, (3.4) 

Tn = 2n1/3U. (3.5) 

the largest term neglected being - (12/  18 U2t,) log (6 Ut,/l). It follows immediately 
that 

The value of (t-f)2 = (t-Q2dP may be calculated in exactly the same 

manner. The calculation is straightforward, though a little lengthy, and gives 
- L 

6 Ut, 
-+log-- + i) 

18 1 
( t - f ) 2  = - 

u2 

Note that this variance does not exist if t, and to are infinite, and we may there- 
fore expect the statistical properties of the path of an idealized fluid particle to be 
very different from those of an element of material quantity, even though the 
molecular diffusivity is very small. This is why the rules (2.14) and (2.15) were 
formulated, a rough attempt at estimating the effects of molecular diffusion being 
thought better than none at all. 

It follows from (3.6) that (T, - Pn), = n12a?J U2, and that the dimensionless 

has zero mean and variance r$ . 
Since rT is large when t, and to are large compared with 1/ U ,  we must be cautious 

in applying the Central Limit Theorem to t,. As a rough estimate (a more precise 
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argument based on the results of $3.7 below gives a slightly different one), t, will 
be normally distributed when ti is small compared with one. Now, 

(T, - F,), = n(t - t)3 
P 

and it may be shown that ( t  - t )3  - Ql2t0/ U 2 ;  thus 

Hence, t, is normally distributed to a good approximation only if the number of 
steps is so large that n* QUto / l ;  i.e. the smaller K and the larger to, then the larger 
is the number of steps before (3.7) is normally distributed. 

The covariance of X, and t, is 

(3.9) 

terms which vanish when t, and to equal infinity being neglected. It is immediate 
that y, t, = z, t, = 0,  because the terms in q5 integrate to zero. 

~. - 

3.3. Probability distribution of the number of steps in a given time 

So far we have examined the displacement and time after n steps, where n is a 
fixed number. I n  order to calculate the dispersion, it is necessary to know the 
probability distribution (p.d.) of the displacement after a given time T ,  say, 
where T is in general large compared with 11 U .  

The first step is to calculate the p.d. of the number of steps made in the time T. 
The probability that more than n steps are required before the time exceeds T is 
equal to the probability that T, < T, since each event implies the other, which in 
turn is equal to the probability that t, < t, where 

(3.10) 

Hence, the probability that t (with T fixed and n variable) lies in the range t to 
t + d t  is equal to the probability that t, lies between t andt + d t  when the value of 
n satisfies (3.10), i.e. 

(3.11) 

(The positive square root is taken in (3.11) so that n goes from 0 to co as t goes 
from +a to -m. Also, it is supposed that n is sufficiently large for it to be 
regarded as a continuous variable.) 

The p.d. o f t  is in general a complicated function, being dependent upon the 
p.d. oft, for all n, but if the mean value of n for given T ,  denoted by %, is large, 
the p.d. o f t  will depend mainly upon the p.d.'s of t, for values of n not too 
different from n and the p.d. o f t  will approximate to that of tz. Indeed, as i5 --f GO 
the p.d.'s o f t  and t, become identical since the p.d. oft, is independent of n for 
sufficiently large n. 
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Equation (3.11) may be written approximately as 

3UT 9t 8UT 4 
2 1 X( 3 1 ) ’  

n = - 

the terms neglected being O(g$). It follows that 

- 3 U T  
n = -~ 

2 1  
with error O(u$/E).  

(3.12) 

(3.13) 

3.4. The p.d.  of the lateral displucement after a given time 

Denote the component of the displacement in the y-direction after time T by Y .  
From (3.3), Y = In* y,, and if 7i4 9 1 we may write y, = yR except for a negligible 
set of values of n. Further, if gT/?i* < 1, n is given by (3.12) and, to the same 
approximation. 

(3.14) 

Hence 

Thus, when f lT /E4  < 1, Y is normally distributed with zero mean and 

Y 2  = $UlTg;- = t U l T ,  (3.15) 
on substituting from (3.2).* 

Identical results hold for the displacement in the x-direction. Note that the 
p.d. of the lateral displacement is independent of molecular diffusion and the 
same result should hold for idealized fluid particles; it  will be verified later that 
this is indeed so. 

Y = ($UTl)* y, - gty, = ($UTl)* y,. 

- 

3.5. The p.d. of the longitudinal displacement after a given time 

Denote the longitudinal displacement after time T by X .  From (3.3) 

X = h+xn + gin, 

and if 3 4  9 1, we may again write x, = x,. Substituting for n from (3.12) and 

X = U T  - ($UTl)$ (t - x,), (3.16) (3.14), we have 

neglecting terms of order ltx,. Then 
- 
X = UT = $lZ. (3.17) 

Suppose now that T is sufficiently large for 

1 Ut, 
Ti* 9 --. 

3 1  
(3.18) 

Then the p.d. oft, is normally distributed with variance (T$, and so also will be 
the p.d. of t .  Hence, X -  U T  

T* 
____ = - ($Ul)* (t - x,) 

* In  the interests of conciseness, the argument is presented here and in $3.5 in an 
heuristic manner. Rigorous arguments can be formulated, but they are more complicated 
and less direct, and appear to be out of place in the present context. 
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is the sum of two normally distributed variables with finite variances and is there- 
fore itself normally distributed with zero mean and variance given by 

on substituting from (3.2)) (3.6) and (3.9). 
It should perhaps be mentioned that this analysis proves only that the p.d. of 

X / T *  is asymptotically normal, it does not prove that the p.d. of X -  U T  is 
asymptotically normal. Indeed, from (3.16) and (3.8), 

( X -  U T ) 3  N - (+UTl)%i3 - -$U2Tlto, (3.20) 

which becomes large as T -+ co, so that the analysis predicts that the p.d. of X, 
as opposed to that of X/T* ,  becomes increasingly skew as T increases. 

3.6. The random walk according to the rules (2.15) 

The results obtained so far have been based on the rules (2.14) which are for the 
case Z/U < t ,  < to. It is expected, however, that the rules (3.15) for the case 
t ,  < 1/U < to may sometimes apply. 

The previous analysis depends upon the duration of a single step only in so far 
as the statistical properties of T, are affected. That is to say, the previous analysis 
is unaffected apart from $3.2 which must be repeated using the new rules. It is 
then sufficient to replace the value of gT used above by a new value, gT1 say, 
obtained using (2.15). 

r I  
where P, is that part'of P in which 1/{3U cos 8) < to, and Pz = P - P,. Substituting 
for dP from (2.20)) integrating with respect to q5 and r, and neglecting terms which 
vanish as to -+ co (these are a t  most l2/9U2t0), one obtains 

t /3UtO 21 
2to sin 8 cos 0 d8 = -- I cose=o 3 u  

21 
-sin 8 d8 + 

as before. Similarly, the variance of the duration may be calculated, giving 

(3.21) 

The values of x,f, and p are again given by (3.9) and (3.8). 
The results of sQ3.4 and 3.5 now apply with rT replaced by gT1. Thus, the 

statistical properties of the lateral displacement remain unaltered. So do those 
of X except that now 

(3.22) 

when (3.18) is satisfied. 
It seems plausible to  suppose that the lateral displacement is independent of 

t,, sinoe the same result is obtained for t, 9 Z/U and t, < l /U.  For the longitudinal 
22 Fluid Mech. 6 
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displacement, the leading terms of (3.19) and (3.22) are the same and it seems 
plausible that the variance of the displacement for intermediate values oft, will 
be intermediate between the values of (3.19) and (3.22). 

3.7. Further analysis of the random walk 
The reason why the statistical properties of the longitudinal displacement involve 
the molecular diffusivity (through t ,  and to) is that the mean square duration of a 
step by an idealized fluid particle is not finite,* and therefore the Central Limit 
Theorem cannot be applied to the variable t, evaluated for such particles. It is 
then not possible to prove that (1/T) ( X  - UT)2 tends asymptotically to a value 
independent of T as is usually the case for random processes occurring in nature. 
As we have seen, this difficulty does not arise if molecular diffusion is taken into 
account. However, the expressions (3.19) and (3.22) tend to infinity as K -+ 0, 
and also the value of T which must obtain for these expressions to apply becomes 
infinite as K -+ 0, because of (3.18). 

It is natural to inquire what happens if K,  or more precisely l/Ut,, is so small 
that (3.18) is not satisfied even though T is sufficiently large for B* B 1, or alter- 
natively what are the statistical properties of the displacement of an idealized 
fluid particle whose velocity is given by (2.10) for all values oft. To answer these 
questions, it is necessary to investigate the statistical properties of the random 
walk in rather more detail. 

Consider the joint probability distribution function (j.p.d.f.) of x,, y,, z, 
and t,, where these random variables are defined by (3.3) and (3.7) but for the 
moment we do not specify the value of the duration of a step. The joint charac- 
teristic function (j.c.f.) of these quantities is the fourier transform of the j.p.d.f.; 
that is, the j.c.f., C,(& y, [, 7) say, is the expectation of exp i(tx, + yy, + [z, + Tt,). 

By well-known results (see Cram& 1946), if @((, 7) is the j .c.f. of random variables 
x and y with a j.p.d.f. $(x, y), the j.c.f. of ax+ b and cy+d (a,  b, c and d being 

constants) is ex+dv@(a& cy). Also, the j.c.f. of 2 x,. and C y7 is {@(e, r)>n. n n 

1 1 It follows from these results that 

cn(t, ~,5,7) 
- 

((cos 8 -  cos 0) + y sin Bcos $ + csin Osin $ +- (t  -i) uT I I)” 
(3.23) 

We require the value of (3.23) when n is large compared with unity. The analysis is 
not particularly difficult, but the details are very tedious and we shall confine 
ourselves to a brief description of the principal steps. The essential difficulty is 
that the exponential in the integrand in (3.23) may be expanded as a power 
series in 6,  7 and c, but not in 7, since T is multiplied by t which ranges up to to (or 
infinity), unless Ut,/Zn& << 1 which is now not necessarily the case. 

* The mean square duration of a step by an idealized fluid particle is t2dP which is 

proportional to t f( t)  dt, where f ( t )  dt is the (spatial) proportion of particles at any instant 

undergoing steps of duration between t and t+dt, since, as explained in $2, dP is propor- 
tional to this proportion multiplied by the velocity of the step. According to (2.12), this 
integral diverges for all h so that the above result does not arise from the assumption h = CO. 

s 1: 
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Suppose now that d P  is given by (2.20), and t is given by one of (2.1 I ) ,  (2.14) or 
(2.15). We then take the logarithm of (3.23) andexpand the exponential as apower 
series in [, 7 and 5, giving after some reduction 

log C, = n[S ,  exp [i ~ 7 ( t  - f ) / l n ~ ]  dP - 1 I 
- 4&zc& +@a$ + CZcf$ + 2[rvxT)  + O(n-)), (3.24) 

where use has been made of the result 

f(0, 4)  exp [iUrt / lnt]  dP = d P  + o(n-*), (3.25) 

for f (8, 4)  a regular function, and the values of as, 8% and axT are those given 
in (3.2) and (3.9). The result (3.25) follows from the fact that differentiation with 
respect to r under the integral sign is permissible if the resulting integral is 
absolutely convergent. 

It remains to evaluate 

Suppose the rules (2.14) apply. Then the integral may be broken up as in the 
derivation of (3.4) into integrals with respect to 8 and p. In  the domain I (see 
$3.3) introduce new variables $ = 7/(6n*p cos 8), p = p ;  and in the domain I1 
put $ = 7 / ( 3 n )  cos 0). Integration with respect to p gives after some reduction 

By integration by parts and use of the results 

where y is Euler's constant (see Jeffreys & Jeffreys 1950, p. 471), it  may be shown 
that C2 is given approximately by 

7 Ut,  < 1;  ( 3 . 2 7 ~ ~ )  if __ 
1 31ni 

'''0 1 ( 6y)2-+log--+f 6 Ut ,  2 = %log7+- log- 
18 

7 Ut, r Ut, < 1,  __ $ 1;  (3.278) 
3rd 

if log- 1, __ 
7 In* In) 

$ 1. ( 3 . 2 7 ~ )  
6 n )  T ut, 

if log--$ 1,  -- $ 1, __ 
T In) In4 

22-2 
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Actually, the conditions given here for these formulae to hold are more restrictive 
than is strictly necessary, but more precise conditions are rather complicated. 

Similarly, if the rules (2.15) hold, 

(3 .28~)  

(3.283) 

The j.p.d.f. of x,, y,, z, and t, is the fourier transform of C, and is, for n) $ 1, 

X eXp [ - ~ ( ~ 2 a 2 X + T 2 a 2 y $ . C 2 a 2 y f 7 2 5 2 + 2 ~ T a X T ) ] d t d T d g d T .  (3.29) 

If 2 were constant, it  would follow immediately that the j.p.d.f. is normal with 
xi = c$, y:L = = a$, t i  = X2 and X,t, = aXT, the other covariances being 
zero. Now X is actually a function of 7, but it is a slowly varying function and the 
main contribution to the integration with respect to 7 comes from values of 7 for 
which C7 = O(l ) ,  and it may be proved that to a sufficient approximation (3.29) 
may be evaluated with X independent of T and having the value determined by 
XT = 1. 

- - -  - 

- 
It follows that for the rules (2.14), the value of C2 ( = ti) is approximately 

< 1; 3Uto ( 6y)Z- i log-+f  6Ut, if UtO 
1 n*Z (log 3 Ut,/l)j 

if 1ogntB 1, 

2 2  =+log-+- log- 
1 18 

(3 .30~)  

'-ilog-+k 6 Ut, 
18 1 

4Ut, 4 ut, 
9 1; (3.30~) 

UtO < 1; (3.31a) 

' " ntllogn4 n+l log n+ 
x2 = &(10g6n4)~ if logn* $ 1, 

and for the rules (2.15) 
3 Ut, 

2 2  =+log--$ if 
1 n*Z(log 3Ut0/l)3 

X2 = $log3n8 if lognt $ 1, 3Uto $ 1. (3.31 3) 
ntl(log 

The cases (3 .30~)  and (3.31a) are those which we have in fact already con- 
sidered when (3.18) is satisfied. The case (3.30~) describes the motion of an 
idealized fluid particle since these conditions apply when t, and to become infinite. 

3.8. The statistical properties of the displacement after uJixed time 
The analysis of $3.3 for the probability distribution of the number of steps in 
a given time may now be repeated with the variance of t ,  given by the above 
results. The statistical properties o f t  will again not be very different from those 
oft,, the difference between them becoming smaller as ?i becomes larger since X is 
a slowly varying function of n. 
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The analysis of $8 3.4 and 3.5 for the lateral and longitudinal displacement may 
then be repeated with aT replaced by (Z),=%. Thus Y is normally distributed in 
all cases with zero mean and variance given by (3 .15) ,  and ( X - U T ) / T h  is 
normally distributed with zero mean and variance 

(3.32) 

It seems worth adding here a word of comment about the apparent contradic- 
tion between the results of (3.30b),  ( 3 . 3 0 ~ )  and (3.31b) and the fact that t, has 
exactly the variance a2, or a%1, as the case may be, for all n. The explanation is 
that the p.d. oft, is approximately that of a normal distribution with variance Zz 
provided the value oft, is not too large. For very large values oft,, the p.d. is 
significantly different from that of the normal distribution with variance C2, and 
it is this tail which makes the exact p.d. oft, have variance CT$ or a$,. Examina- 
tion of the analysis of $3.3 shows that only the values of t  in the neighbourhood of 
t = 0 are relevant to the calculation of X - U T ,  and that the long tail to the p.d. 
oft, may be neglected. 

1 
- ( X -  UT)2 = $ U l ( ( C 2 ) , n = ~ + a ~ - 2 ~ x , )  = UlS2, 
T 

say. 

4. The lateral and longitudinal dispersion 
We obtain from the analysis of the previous section the following results for the 

statistical properties of the displacement of a single particle after a given (large) 
time T .  

The mean number of steps and mean longitudinal displacement are, re- 
spec tively , 

(4 .1)  
- 3 U T  
n=--- and x = U T  if % $ l .  

2 1  

The mean lateral displacement is P = z = 0. 
The lateral displacement is normally distributed and 

- 
Y2 = Zz = gU1T if ?it 9 1. (4.2)" 

For the longitudinal displacement when the rules (2.14) apply, necessary 
conditions being Ut,ll 9 1 ,  Ut,ll 9 1 where t ,  = a2/8K, to = 1'/2K, then (1 - UT)/T* 
is approximately normally distributed with variance U1S2 given by (3.32): from 
(3.30) the approximate values are given by 

3Ut0'z 9 1 ;  (4 .36)  
3 ut,p 

if IogE*g 1 ,  
n*(log%+)* l ,  ?i:(logn*)* 

* This result is also obtained by Josselin de Jong (1958). 
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Thus idealized fluid particles (to = t ,  = 00) obey (4.3c), and the variance of 
their longitudinal displacement is an increasing function of T.  This is also the 
case for elements of a material quantity subject to molecular diffusion provided 
the time for appreciable molecular diffusion across streamlines is sufficiently 
large compared with T ;  but as T (and ?i) increase, the variance is given by (4.3b) 
and eventually by ( 4 . 3 ~ ) .  The value of S2 is then independent of T.  

If the rules (2.15) apply, necessary conditions being Ut,/l< 1 and Ut,/l$ 1, 
then from (3.31) approximate values of S2 are 

(4 .4a )  

For this case, P i s  again an increasing function of T provided T is sufficiently small 
compared with to, but when T is sufficiently large S2 has a constant value 
independent of T. 

It therefore appears that molecular diffusion is of great importance in deter- 
mining the statistical properties of the longitudinal displacement however small 
it may be, provided it is not exactly zero and the value of T is sufficiently large. 
It is to be emphasized, however, that the present theory is tentative because of 
the simplifying assumptions that have been made about the way in which mole- 
cular diffusion works, and it should really be regarded as no more than a first 
approximation. It should also be mentioned that the numerical coefficients in the 
above results are not expected to be exactly correct because the geometry of the 
model is obviously a rough approximation to that of a porous medium. 

Longitzcdinal dispersion 

The dispersion of a cloud of marked particles relative to its centre follows from 
the statistics of the displacement of a single particle only if the time or number of 
steps is large enough for the paths of the different particles to become statistically 
independent. As far as the longitudinal dispersion is concerned, there is no 
apparent reason why this should not be so after the particles have made 100 or so 
steps, provided the original dimensions of the cloud are large compared with a 
step length, although it is difficult to formulate satisfactory arguments to make 
this statement rigorous. It is therefore reasonable to assume that the above 
results for the longitudinal displacement may be applied to the dispersion of a 
cloud. A longitudinal diffusivity, K~ say, may be defined by the equation 

1 
1 - - ( X -  UT)' = iUlS2, 

-2T  (4.5)  

where S2 is given by (4.3) or (4 .4)  as the case may be. The dimensionless ratio 
U ~ / K ,  is not a constant but depends upon to, t,, T and Z/U. The longitudinal dis- 
persion does not satisfy the ordinary diffusion equation unless T is sufficiently 
large for (4.3 a)  or (4 .4a )  to apply, since otherwise the diffusivity is a function of T. 

* The result (4.4b) is essentially that given by Josselin de Jong (1958). 
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It seems worth while mentioning here one case of physical interest for which the 
result (4.4b) may possibly apply for all T, i.e. for which the dispersion may be 
calculated on the assumptions that all marked particles move with the average 
speed in the pore and that the duration of a step may be unbounded. Consider 
the displacement of a fluid in a porous medium by another fluid of identical 
viscosity (and density if hydrostatic pressures are important), and suppose that 
the two fluids do not mix. If the fluids are homogeneous, molecular diffusion does 
not enter the problem. When the interfacial tension is sufficiently large for the 
ratio of p U to the interfacial tension to be small compared with one, then to a good 
approximation the meniscus between the two fluids in a pore will extend across 
the pore and move with a velocity equal to that of the average speed through the 
pore." Assuming that the presence of the menisci does not significantly affect the 
flow field through the porous medium, the relative motion of the two fluids may 
be calculated on the assumption that the meniscus does not exist and every fluid 
particle moves with the average speed in the pore, and the distribution of relative 
concentration in the mixing region should therefore be asymptotically normal 
with a variance given by (4.4b), with to = co, for all sufficiently large T. 

Lateral dispersion 

It follows from the assumption of the statistical independence of the paths of 
different particles that the transverse or lateral dispersion may be described by 
an effective diffusivity, K~ say, defined by 

from (4.2). The lateral dispersion is therefore independent of molecular diffusion 
and the dimensionless number U ~ / K ,  is constant. 

There is, however, considerable doubt about the correctness of (4.6). Sir 
Geoffrey Taylor has pointed out that in an exactly two-dimensional flow through 
an exactly two-dimensional porous medium, the requirement that streamlines 
cannot cross implies that the width of a stream of marked fluid remains constant, 
variations of the order of the grain size being neglected. In  other words, although 
the centre line of the stream may wander about from side to side with a mean 
square displacement given by a result similar to (4.2) (provided, of course, there 
are no rigid side walls) the paths of individual particles in the stream are so 
correlated that the width of the stream remains constant. Thus in two dimensions, 
either one or both are false of the assumptions that the paths of different fluid 
particles become statistically independent and that the lateral displacement in 
successive steps by a single particle are statistically uncorrelated. It is not 
obvious which of these assumptions is worse since the presence of rigid side walls 
parallel to the average velocity seems to make a difference. If side walls are there, 
the path of a single element is approximately a straight line, so there must be 
a high correlation between the lateral displacement in successive steps; if side 
walls are not there, there is no apparent reason why such a correlation should exist. 

* This result was pointed out by Sir Geoffrey Taylor. 
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The situation in three dimensions is even more obscure. Streamlines may now 
pass round one another, but it is unlikely that both of the assumptions just 
mentioned are valid unless some other effect is present to reduce the correlation, 
e.g. a complicated streamline pattern at the pore junctions which would have the 
effect of twisting streamlines around each other, or even some turbulence, 
although this is very unlikely to be present when the average motion satisfies 
Darcy7s law. There seems to be hardly any experimental evidence on the lateral 
dispersion. 

Comparison between theory and experiment for the longitudinal dispersion 

The experiments of Von Rosenberg (1956). Von Rosenberg observed the width 
of the mixing region or concentration front between two miscible liquids of equal 
viscosities and densities (benzene and ethyl n-butyrate) after passage with either 
of three velocities through three packed towers, filled with Ottawa sand, of 
various lengths, the front being initially sharp. Table 1 gives the value of IS2, 
defined as (1/ U T )  ( X  - UT)2,  calculated from the data on the assumption that the 
concentration curve is derived from a normal distribution. 

Length of tower (cm) 
Average velocity I J > 

(crnlsec) 27,6 57.9 118.0 

6 x 0.085 0.075 0.058 
48 x 10-4 0.085 0.110 0.110 
36 x 10-3 0.078 0.128 0.158 

TABLE 1. Values of IS2 in cm calculated from the data of Von Rosenberg (1956). 
Each figure is the result of a separate experiment. 

Exact quantitative comparison is not possible because Von Rosenberg does 
not give the average grain size of the sand. However, let us for the sake of example 
suppose that I = 0.1 ern (which seems reasonable though possibly a little large) 
and K = 1.5 x 10-5cm2/sec (this is of the same order of magnitude as the dif- 
fusivities of simple organic liquids in benzene); then to = 330 see. The values of 
l /U are 170, 21 and 3sec, respective1y;and the theory given here will therefore 
not apply to the experiments with the smallest velocity since for these Utoll is not 
large compared with unity. If we suppose further that all = Q (the value which 
seems appropriate to glass beads and which will suffice here as an estimate) then 
t ,  = 3 see, so that, for the purposes of rough comparison at least, the appropriate 
theoretical results are those of (4.4). On examining the relative values of Uto/Z 
and E ,  we find that all the experiments with U = 48 x 10-4cm/sec satisfy the 
conditions of (4.4a), according to  which S2 is independent of T and therefore of 
the length of the tower; whereas those with U = 36 x 10-3cm/sec are inter- 
mediate between the conditions of ( 4 . 4 ~ ~ )  and (4.4b) with a tendency to satisfy 
the latter, rather than the former, according to which X2 is a logarithmic function 
of the length of the tower. It is clear from table 1 that there is qualitative agree- 
ment between the theory and experiment. As regards quantitative agreement, it  
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follows from ( 4 . 4 ~ ~ )  that the value of 1S2 for U = 48 x cmlsec is 0.12 cm; and 
from (4.4b) the values of IS2 are 0.13, 0.14, 0*16crn, respectively, for the three 
tower lengths. The quantitative agreement would be improved by taking a 
slightly smaller value of 1. 

The experiments of Ebach & White (1958). In  these, the dispersion was measured 
of Pontomine sky blue 6BX dye in water flowing through a 5.12ft. long tower 
packed with glass beads of diameter 0.0083 in. For those experiments in which 
the Reynolds number based on the average velocity and bead diameter was less 
than one (so that Darcy's law may be satisfied), the observed values of Ul/Kl, 
with 1 equal to the bead diameter, were scattered between 0.4 and 0.6 with no 
systematic variation for 9 values of U between 0.00077 and 0*0315ft./sec. 

With a value of K = lo4 cm2/sec (which seems appropriate for an organic dye), 
the value of to is 220 sec and that of t, is 2.2 sec, taking all = Q. The value of I/ U 
lies between 0.9 sec and 0.02 sec and the appropriate theoretical results are those 
of (4.3). The value of E is the same for all the experiments and is 1.1 x lo4. 

Comparison of the values of Uto/l, Ut,ll and T i  shows that for the smallest 
velocities the conditions (4.3b) are satisfied, whereas for the largest velocities the 
conditions (4 .3~)  are satisfied. According to (4.36) the value of S2 increases from 
2.8 to 3.7 as the velocity goes from 0.00077ft./sec to 0*0315ft./sec, and according 
to (4 .3~)  the value of S2 is 3.4 for all velocities. Thus, according to the theory S2 
should go from 2.8 to 3.4 as the velocity goes from the smallest value to the 
largest, and the value of Ul/Kl = 2/S2 goes from 0.72 to 0.59. These results are in 
good agreement with the experimental observations bearing in mind the large 
experimental scatter. 

The experiments of Josselin de Jong (1958). In  these the width of a concentration 
front, which was initially sharp, between water and salt solution was measured 
after passage through a tower of glass beads of diameter 0.02 cm after distances 
of 2-5, 7.5, 12.5 and 17.5cm. The value of U was 0.92 x 10-2cm/sec. Josselin de 
Jong compared the observed values with the predictions of (4.4b) and found 
approximate agreement if the value of 1 was taken as 0.008 cm, i.e. about one- 
third the bead diameter. 

Comparing his results with the theory of the present paper, we have to = 13 sec 
with K = 1.5 x cm2/sec and 1 = 0.02 cm, and t, = 0-13 sec taking ail = i .  The 
value of l /U  is 2.2 sec, so the appropriate theoretical results are (4.4). Further, 
the values of E are 190, 560,940 and 1320, and comparison with (4.4) shows that 
it is the conditions of (4.4a) which appear to be satisfied, and (4.4b) does not 
appear to be valid. 

Now from (4.4a), the value of ( ~ K ~ T / X ) *  = lk5' is 0.13 cm4, I being taken as the 
diameter of the beads 0*02crn, and the value of this quantity according to the 
experimental data is approximately 0.14, so that the agreement with (4.4a) is 
better than that with (4.4b), in accordance with the present theory. 

To sum up, the agreement between the present theory and the three sets of 
experimental data is encouraging, but a more thorough experimental investiga- 
tion is clearly required. 
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5. Remarks on the dispersion when Darcy’s law not satisfied 
An essential feature of the model put forward in $ 2  is that the velocity of the 

fluid through a pore should be proportional to the pressure drop between the ends 
of the pore. This is so if the inertia of the fluid is negligible and the flow in the pores 
is domirated by viscosity, and it was pointed out in $ 2  that this is equivalent to 
assuming that the flow obeys Darcy’s law, equation (2.3)) and that the streamline 
pattern is independent of the average velocity. For sufficiently large values of the 
velocity, or more precisely of the Reynolds number based on the pore length, the 
average velocity and the kinematic velocity, the fluid inertia is not negligible, 
Darcy’s law is not satisfied, and there is no reason to expect that the dispersion is 
described by the results of the previous section. Since this case obtains in many 
practical applications, it seems worth while examining our model to see if by 
means of suitable modifications predictions can be made about the dispersion at 
high values of the average velocity. 

The difficulty is that the flow is then much more complicated and the calcula- 
tion of the velocity field in the pores becomes troublesome. Also, the assumption 
that the pores are straight and uniform becomes suspect because the curvature of 
the streamlines is important when the fluid inertia is not negligible. However, the 
dispersion is primarily a kinematic, as opposed to a dynamic, property of the flow 
field, and there is no obvious reason why the path of a marked particle should not 
be approximated to by a random walk of randomly orientated straight steps of 
random duration. But in order to calculate the duration of the steps it is 
necessary to consider the dynamics of the flow, and it has not proved possible so 
far to do this in a satisfactory manner. 

It seems worth while to examine qualitatively the model consisting of an 
assembly of straight uniform pores as the Reynolds number increases. It follows 
from dimensional analysis that 

(v denotes the kinematic viscosity), where F is independent of the Reynolds 
number UlIv when it is not too large (the value of Ullv for which departures from 
Darcy’s law become significant varies greatly from one type of porous medium to 
another and will be anywhere between 10 and 100). Now as the Reynolds number 
increases, the velocity profile will cease to be parabolic all along the pore and will 
be flat a t  the ends, i.e. the extent of the inlet regions will increase with the 
Reynolds number. Thus one effect of increasing Ul/v  is to make the velocity of the 
fluid in a pore more uniform and hence to decrease the dispersion, until the limit 
is reached in which the velocity is uniform throughout the pore except for thin 
layers near the pore walls. It does not follow immediately that F decreases as 
UZ/v increases because other Reynolds number effects are present; in particular, 
the ratio of the velocity in a pore to the average velocity of the fluid through the 
medium will be Reynolds number dependent. However, the longitudinal dis- 
persion was calculated using a random walk model which takes this effect into 
account and it appears that the longitudinal dispersion again decreases with 



A theory of dispersion in a porous medium 347 

increase of Reynolds number, so that the indications are that J’ is a decreasing 
function of Ullv. 

This randomwalk model is rather crude, but the results are not without interest 
and it seems worth while placing them on record. With the same notation as used 
in $ 2, it  is supposed that the average speed in a pore is proportional, owing to the 
effects of inertia, to some power of the pressure difference between the ends 
of the pore, and further that the pressure in the medium is P’z. Accordingly, 
@ = KP’s coss8 (0 < 8 < &n), where s is a function of the Reynolds number and 
K has the same value for every pore. 

By means of the arguments of $2, the (spatial) average of velocity is 

( 5 . 2 )  

and hence Q = (s+2) ucosse. (5.3) 
It follows from (5 .2 )  that the filter velocity is proportional to a power of the mean 
pressure gradient, and it is indeed found that this is sometimes so in practice (see 
Scheidegger 1957). A means of giving a value to s is thereby afforded, and s is 
usually between Q and 1. We should intuitively expect s to approach one when 
UZjv is small, and to approach 4 when the Reynolds number is large enough for the 
flow in the pores to be turbulent and the pressure drop to be proportional to the 
square of the velocity, and that in general s decreases as Ul/v  increases. 

The duration of a stez, is 

if it is supposed that the velocity profile in a pore is flat and that all fluid particles, 
except for a negligible fraction, move with the average speed 8. The probability of 
a given step occurring may then be calculated as in $ 2  and we have 

d P  = S+1sin8cosS8d8dQ __ 2n (0 G 8 G +n, 0 < q5 < 2n). (5 .5)  

The (ensemble average) variance of t  now exists and it is not necessary to bring in 
molecular diffusion. 

The statistical properties of the displacement of a single particle may now be 
calculated exactly as in $ 3.1 to $ 3.5, apart from changes in numerical values. The 
results are, with the same notation as employed previously: 

p = z = o ;  

the lateral displacement is normally distributed with 

and ( X  - UT)/TB is normally distributed with 

(5.9) 
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(This last condition on ‘v7; requires that s is not too close to 1 and follows from an 
analysis similar to that carried out in $ 3.7. If it is not satisfied and (1 - s) log ?i < 1, 
then it may be shown that the result (4.4 6) applies, as is to be expected since when 
s -+ 1 the duration of a step as given by (5.4) tends to the value used in calculating 
(4.4b).) 

It follows from the assumption that the paths of different particles become 
statistically independent that 

and 

5 -  s+2 
UZ - 2 ( s + l ) ( s + 3 ) ’  

3- (s + 1)2 
uz - 2 ( 1 - s ) ( s + 2 ) ( s + 3 ) ’  

(5.10) 

(5.11) 

where rc, and K~ denote the effective lateral and longitudinal diffusivities, re- 
spectively. It will be noted that (5.11) decreases as s decreases from 1 to +. 

The values of KJUZ reported in the literature for high Reynolds numbers show 
considerable scatter but seem to lie between 0.5 and 1.  The value of (5.11) is 
0.76 when s = 0.8. 

The values of KJ UZ given by (5.10) seem to be a little high, but this discrepancy 
may well be explained by the falseness of the assumption that the lateral displace- 
ment in successive steps are uncorrelated. As regards the variation of K ~ /  Ul with 
Reynolds number, it  seems that the main effect of increasing Reynolds number 
may be to decrease the correlation between the lateral displacement in successive 
steps, because of an increase in complexity of the streamline pattern at the pore 
junctions or because of some turbulent mixing taking place, and thus to increase 
the lateral dispersion. 

I wish to thank Sir Geoffrey Taylor for suggesting this investigation and for the 
benefit of several discussions; also Dr G. R. Batchelor for constructive criticism of 
an earlier draft. 

Appendix 
Integrals of the form 

1 = ~ ( C O S  8)  g(( 1 +pl) cos 8 + p 2  sin 8 cos 4 + p ,  sin 8 sin $1 sin 6 

x exp [ - 4%): + p ;  + P a  d4 dP1 dP2 dP3 
s 

over the domain 

0 < 8 < n, 0 < q5 < 2n-, (1+p1)cos8 +p2sin8cos$+p,sin8sin$ > 0, 

occur in $2. The method of evaluation consists in making the transformation 

p i  = p ,  cos 0 + p 2  sin 8 cos q5 + p 3  sin 8 sin $, 

p ;  = -p,sin 8 + p 2  cos 8 cos q4 + p 3  cos 8sin 4, 
p;  = - p 2  sin 4 +p3 cos 4, 
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which gives 

J 
0<L9<r 

0<$<27/ 
cos #+Pi> 0 J-1 f(c05 0) g ( p  + cos 0) dp d(c0s 0) 

3+ 
h 

- - -_ 

0<0<7/ 
p+oos 8 2  0 

on integration with respect to pL,p; and +, and writing p i  = p .  The evaluation of 
the last integral is straightforward for the cases which occur in 5 2 .  
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